An adaptive multigrid algorithm for simulating solid tumor growth using mixture models
نویسندگان
چکیده
In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies.
منابع مشابه
Simulating Solid Tumor Growth Using Multigrid Algorithms
In mathematical cancer modeling, the growth of solid tumors combines the mechanics of cell-cell adhesion, cell growth velocity and angiogenesis amongst numerous others. This project simulates solid tumoral growth with the use of a coupled system of Cahn-Hilliard-type convection-reaction-diffusion equations. This mathematical model uses a two-cellular tumoral structure of viable, or proliferatin...
متن کاملNonlinear simulations of solid tumor growth using a mixture model: invasion and branching.
We develop a thermodynamically consistent mixture model for avascular solid tumor growth which takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. The mixture model is well-posed and the governing equations are of Cahn-Hilliard type. When there are only two phases, our asymptotic analysis shows that earlier single-phase models may be recov...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملThree-dimensional multispecies nonlinear tumor growth--I Model and numerical method.
This is the first paper in a two-part series in which we develop, analyze, and simulate a diffuse interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two and three dimensions. Three-dimensional simulations of nonlinear tumor growth and neovascularization using this diffuse interface model were recently presented in Frieboes et al. [2007. Computer simulation ...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and computer modelling
دوره 53 1-2 شماره
صفحات -
تاریخ انتشار 2011